case class SignedBVRing(bits: Int) extends ModRing with EuclidianRing with Product with Serializable
Ring of signed fixed-size bit-vectors
- Alphabetic
- By Inheritance
- SignedBVRing
- Serializable
- Product
- Equals
- EuclidianRing
- RingWithDivision
- ModRing
- RingWithIntConversions
- CommutativeRing
- CommutativePseudoRing
- RingWithOrder
- Ring
- PseudoRing
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new SignedBVRing(bits: Int)
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def additiveGroup: Group with Abelian with SymbolicTimes
Addition gives rise to an Abelian group
Addition gives rise to an Abelian group
- Definition Classes
- PseudoRing
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- val bits: Int
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- def div(s: ITerm, t: ITerm): ITerm
Euclidian division
Euclidian division
- Definition Classes
- SignedBVRing → EuclidianRing → RingWithDivision
- val dom: ModSort
Domain of the ring
Domain of the ring
- Definition Classes
- ModRing → PseudoRing
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def geq(s: ITerm, t: ITerm): IFormula
Greater-than-or-equal operator
Greater-than-or-equal operator
- Definition Classes
- RingWithOrder
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def gt(s: ITerm, t: ITerm): IFormula
Greater-than operator
Greater-than operator
- Definition Classes
- RingWithOrder
- def int2ring(s: ITerm): ITerm
Conversion of an integer term to a ring term
Conversion of an integer term to a ring term
- Definition Classes
- ModRing → PseudoRing
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isInt(s: ITerm): IFormula
Test whether a ring element represents an integer number.
Test whether a ring element represents an integer number.
- Definition Classes
- ModRing → RingWithIntConversions
- def leq(s: ITerm, t: ITerm): IFormula
Less-than-or-equal operator
Less-than-or-equal operator
- Definition Classes
- ModRing → RingWithOrder
- val lower: IdealInt
- Definition Classes
- ModRing
- def lt(s: ITerm, t: ITerm): IFormula
Less-than operator
Less-than operator
- Definition Classes
- ModRing → RingWithOrder
- def minus(s: ITerm): ITerm
Additive inverses
Additive inverses
- Definition Classes
- ModRing → PseudoRing
- def minus(s: ITerm, t: ITerm): ITerm
Difference between two terms
Difference between two terms
- Definition Classes
- PseudoRing
- def mod(s: ITerm, t: ITerm): ITerm
Euclidian remainder
Euclidian remainder
- Definition Classes
- SignedBVRing → EuclidianRing
- def mul(s: ITerm, t: ITerm): ITerm
Ring multiplication
Ring multiplication
- Definition Classes
- ModRing → PseudoRing
- def multiplicativeMonoid: Monoid with Abelian
Multiplication gives rise to an Abelian monoid
Multiplication gives rise to an Abelian monoid
- Definition Classes
- CommutativeRing → Ring
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val one: ITerm
The one element of this ring
The one element of this ring
- Definition Classes
- ModRing → PseudoRing
- def plus(s: ITerm, t: ITerm): ITerm
Ring addition
Ring addition
- Definition Classes
- ModRing → PseudoRing
- def product(terms: ITerm*): ITerm
N-ary sums
N-ary sums
- Definition Classes
- PseudoRing
- def productElementNames: Iterator[String]
- Definition Classes
- Product
- def ring2int(s: ITerm): ITerm
Conversion of a ring term to an integer term.
Conversion of a ring term to an integer term. This should have the property that
isInt(s) <=> int2Ring(ring2Int(s)) === s
.- Definition Classes
- ModRing → RingWithIntConversions
- def summation(terms: ITerm*): ITerm
N-ary sums
N-ary sums
- Definition Classes
- PseudoRing
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def times(num: IdealInt, s: ITerm): ITerm
num * s
num * s
- Definition Classes
- PseudoRing
- def toString(): String
- Definition Classes
- PseudoRing → AnyRef → Any
- val upper: IdealInt
- Definition Classes
- ModRing
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- val zero: ITerm
The zero element of this ring
The zero element of this ring
- Definition Classes
- ModRing → PseudoRing
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)