Extensions
 Handling Transducers

Transducers

$$
\begin{aligned}
& \begin{array}{l}
\text { var } \mathrm{x}=\mathrm{htmlEscape(name);} \\
\text { var } \mathrm{y}=\text { escapeString }(\mathrm{x}) ; \\
\text { nameElem.innerHTML }= \\
\text { '<a onclick=' }+ \\
\text { '"viewPerson(\' } \left.+\mathrm{y}+{ }^{\prime} \backslash '\right)^{\prime}>^{\prime}+\mathrm{x}+{ }^{\prime}</ a>' ;
\end{array} \\
& \text { nameElem has to match } \\
& \mathrm{e} 1=<\text { a onclick="viewPerson('); attackScript();......"> }</ \mathrm{a}>
\end{aligned}
$$

Concatenation (+)

Regular constraints (e1)

Transducers:

Examples of Transducers

Transducers

```
var x = htmlEscape(name);
var y = escapeString(x);
nameElem.innerHTML = '<a onclick=' +
    '"viewPerson(\'' + y + '\')">' + x + '</a>';
```

nameElem has to match
e1 =

```
\(x=R 1\) (name);
\(y=R 2(x)\);
\(z=w 1 . y . w 2 . x . w 3 ;\)
nameElem_innerHTML := R3(z);
assert( nameElem_innerHTML matches e1)
```

These R1, R2, and R3 are appropriate finite transducers

Backward + Forward Propagation

Proposition: given an NFA A and a transducer T, then both $T(L(A))$ and $T^{-1}(L(A))$ are regular and NFA for these are poly-time constructible.

We go through a proof sketch for T of the form replaceAll ${ }_{a, \beta}: \Sigma^{*} \rightarrow \Sigma^{*}$
where $a \in \Sigma, \beta \in \Sigma^{*}$

Forward is not difficult ...

Forward is not difficult ...

What is replaceAll

Forward is not difficult ...

Forward is not difficult ...

Backward Propagation

$$
\begin{gathered}
A=\left(\Sigma, Q, \Delta, q_{0}, F\right) \\
\text { replace }_{a, \beta}^{-1}(L(A))=?
\end{gathered}
$$

Let s denote the set of pairs of states (p, q) in A such that $\beta \in L\left(A_{p, q}\right)$
Erase a-transitions from A

Add (p, a, q) for each $(p, q) \in S$

Lemma: the resulting automaton recognizes all $w \in \Sigma^{*}$ such that $\operatorname{replace}(w, a, \beta) \in L(A)$.

Exercise

Add (p, a, q) for each $(p, q) \in S$

What is replaceAll ${ }^{-1}(L(A)) ?$
$S:=\left\{\right.$ pairs of states (p, q) in A such that $\left.\beta \in L\left(A_{p, q}\right)\right\}$
Erase a-transitions from A
Add (p, a, q) for each $(p, q) \in S$

What is replaceAll ${ }^{-1}(L(A)) ?$
$S:=\left\{\right.$ pairs of states (p, q) in A such that $\left.\beta \in L\left(A_{p, q}\right)\right\}$
Exercise

What is replaceAll ${ }^{-1}(L(A)) ?$

Exercises

1. Extend forward/backward propagation to general replaceAll ${ }_{a, \beta}: \Sigma^{*} \rightarrow \Sigma^{*}$. Think of different matching strategies (e.g. first/nondeterministic)
2. Extend forward/backward propagation to transducers
3. Extend backward propagation to replaceAll ${ }_{a, x}: \Sigma^{*} \rightarrow \Sigma^{*}$, where x is a variable. Show this fails for forward propagation
4. (Challenging**) Extend forward/backward propagation to replace with capture groups. [Hint: use streaming string transducers.]
