
String Solving for Verification
Artur Jeż (Wroclaw), Matt Hague (Royal Holloway), Anthony W. Lin (RPTU,
MPI-SWS), Oliver Markgraf (RPTU), Philipp Rümmer (Regensburg, Uppsala)

POPL’24 TutorialFest

Tutorial Overview
0. Intro to string solving for verification (Lin)

Block A: Fundamentals + Lab

1. Theory of strings: Introduction (Jeż)

2. Lab: Getting started with OSTRICH (Markgraf)

Block B: OSTRICH algorithms

3. Practical solving technique: regular constraint propagation (Hague)

4. Extensions: complex string functions, length (Lin/Rümmer)

5. Conclusion

Ubiquity of Strings

Ubiquity of Strings
Strings are heavily used in popular

programming languages

These languages provide rich

string libraries

Do more with less code

Strings are tricky

Ben

Dynamically generated by

Unfortunately, this can generate the following dangerous HTML element
 ……

XSS

Samy Worm (Myspace)
1m Myspace users:
- added Samy as a friend, and
- put “Samy is my hero” on their

profile

XSS is a very common class of web application vulnerabilities:
- top 3 (OWASP’13)
- the most common (Google Vulnerability Reward Program’16)

Used to steal sensitive data (e.g. credit cards, passwords) from end users

Samy Worm: the payload

Strings are tricky
Standard technique to filter dangerous strings is to use character-escaping

 ……

Can you still generate the following dangerous HTML element?

innerHTML
<a> <a>

htmlEscape
Tom’s Tom\’s

escapeString

These are instances of transductions

There is an attack!

‘);attackScript();//
htmlEscape

');attackScript();//
escapeString

');attackScript();//‘

r.h.s. line 3

innerHTML
 ’);attackScript();//‘

mutation XSS
Want automated methods for checking existence of such strings

String Solving Approach
Deductive verification for string programs

Need a logic for expressing string operations and string conditionals

regex
constraints

length constraint
concatenation

substring constraint (or
regex)s ∉ Σ* . ab . Σ*

ASCII/Unicode

SMT over Strings

• Concatenation ()

• Regex matching ()

• Length constraints ()

• Replace/Replace-all and more general string transductions

• Substring (infix) constraints (!s.contains(“ab”))

• String2int and Int2string

• …

x . y
x ∈ a*b*

|x | = |y | + |z |

Alphabet is large
Develop a (unicode) theory over strings within SMT framework

quantifier-free disjunction handled by DPLL(T)
Many possible operations:

SMT-LIB 2.6 theory of strings is a first approximation of this string logic
https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

This theory is tricky …

Long-standing classical
open problem

(y + ‘ba’ + x = x + ‘ab’ + y) /\
(len(x) = len(y))

Extension with Length Constraints

Theory of Concatenation with Regular Constraints
s2 = s1+s1 /\ s3+s2 !=s1+s7+s8
/\ s1 in a* /\ s3 in b*a*

Decidable [Makanin’77,
Schulz’90,Buchi&Senger’90]

Undecidability is almost everywhere, and decidability is typically very difficult

Other string operations (e.g. transducers)
Undecidable if no

further restrictions
on constraints shape

Examples of Transducers

q

1/ε
0/0

Erase all
occurrences of 1

Replace: < by <, > by >, and & by &

q

?/?

l1</&

g1

>/&

a1&/&

l2ε/l

l3

ε/t

ε/;

g2ε/g

g3

ε/t

ε/;

a2ε/a
a3

ε/m

a4

ε/p

ε/;

? 2 ⌃ \ {<, &, >}

Input is a suffix of output

p

ε/0
 ε/1

qε/ε

0/0
 1/1

Transducer models for htmlEscape,
innerHTML, … exist

Among many solvers …
Kaluza

HAMPI

S3

Norn

CVC5

Z3

PISA

Saner

Stranger

NFA2Sat

Woorpje

Z3-str4

Z3Noodler

Sloth

STP

TRAU

OSTRICH

String solvers are far less mature and less scalable compared to other theories

Z3alpha

G-Strings

Gecode+s

…

SeqSolve

SLOG/Slent

OSTRICH String Solver
[POPL’18,POPL19,IJCAR’20,ATVA’20,POPL’22]

Core Strategy:
Regular Constraint

Propagation

Nielsen Transformation

Parikh images
Monadic
decomposition

DPLL

https://github.com/uuverifiers/ostrich

Won SMT Competition’23 in QF_S

>15 Collaborators in 7 unis in China, Germany, Poland, Sweden, UK

Cut

Despite the limitations of
string theory …

Role-Based Access Control

Ensure RHS permits no more than LHS

Therefore, you want to check is UNSATφ ∧ ¬ψ

Aims of Tutorial
Get you up to speed with both theory and practice of string solving for verification

After our tutorial, students and experienced researchers in PL should be able to:

1. Get started using string solvers (in particular, our solver OSTRICH)

2. Get started with research on string solving for verification

Lab component: exercises using OSTRICH (https://eldarica.org/ostrich-popl24/)

Theory component: traditional using slides + exercises

https://eldarica.org/ostrich-popl24/

Tutorial Overview
0. Intro to string solving for verification (Lin)

Block A: Fundamentals + Lab

1. Theory of strings: Introduction (Jeż)

2. Lab: Getting started with OSTRICH (Markgraf)

Block B: OSTRICH algorithms

3. Practical solving technique: regular constraint propagation (Hague)

4. Extensions: complex string functions, length (Lin/Rümmer)

5. Conclusion

