
Theory I: The Essentials

• what can be done (and how)

• what cannot be done (in general)

• what is unknown (open)

Matthew Hague, Artur Jeż, Anthony Widjaja Lin, Philipp Ruemmer

Word equations

Theoretical perspective
String solving = solving Equations + constraints

	 Word equations (with constraints)

Complexity (decidability): depends on constraint types

• regular constraints: PSPACE

• CFG constraints, letter-counting: undecidable

• linear length constraints: open

Equation: 	 U = V, where U, V are sequences of letters (Σ) and variables 
Inequation:	 U ≠ V

String equations and inequations, ex. theory

Nondeterministic reduction.

Existential Theory algorithm: remove alternative (guess), remove inequations (guess) 
Left with system of eqautions.

If U ≠ V then

• U is longer: U = VaU' for some a (letter), U' (variable) or

• V is longer: V = UaV' for some a (letter), V' (variable) or

• first difference U = WaU', V = WbV' for a ≠ b (letters) and W, U', V' (new variables)

Lentin/Plotkin/Siekman algorithm; Nielsen's transform; Matyasevich
x… = y…
• a ≠ b (contradiction)

• x ⊏ y (prefix) ⇒ y ← xy

• y ⊏ x (prefix) ⇒ x ← yx

• x = ε or y = ε
Choose, substitute and delete leading symbols

Used in practice (esp.: restricted instances)

Sound

Satisfiable ⇒ complete

Unsatisfiable ⇒ ?		 contradictions or explore whole search space

Plotkin's algorithm is complete on quadratic equations
abXcY = YcXba bXcaY = YcXba

Y ←aY

abXc = cXba
Y ← ε

Y ← ε
bXca = cXba

Y ← bY

XcabY = YcXba
X ← YX

XcabY = cYXba

Y ← XY

cabXY = YcXba

abX = Xba
Y ← ε

abY = Yba
X ← ε

X ← aX

baX = Xba
X ← bX Y ← aYY ← bY

baY = Yab

ba = ba

X ← ε Y ← ε

X ← cX

Y ←cY

X ← ε ab = ba Y ← ε

Makanin's algorithm

Generalizes the Plotkin algorithm (keeps much more info)

Extends to regular constraints 

First decidability in the general case

• complex

• high complexity

• proof: difficult string combinatorics

• difficult to generalize

Restricted classes

Better algorithms for restricted classes

• quadratic equations (each variable occurs twice)

• two variables

• one variable

• …

Undecidable constraints
• CFG constraints: intersection of CFGs

• letter-counting constraints (linear):

	 |X|a = 1 + 2|X|b

	 encodes Diophantine equations

• …

Encoding in string equations is difficult

Length constraints
|X| = 1 + 2|Y|

Big open problem in the area

The known algorithms change/spoil lengths

The undecidability of letter-counting does not translate

 Compression enters the stage
Plandowski '98 PSPACE

Generelizes reasonably (regular constraints, reversal, …)

Jeż '12: simpler algorithm and analysis:

• good on its own

• ⇒ very robust: generalizes very well

We give the algoritm and proof (no constraints)

Some notation and basics
X, Y, Z … variables

a, b, c: letters	 Σ: alphabet

S: substitution (of variables by strings) S(X)

S: extends to sequences of letters and variables

S: solution of U = V when S(U) = S(V) (solution string)

S: length-minimal solution: for all solutions S'

	 |S(U)| ≤ |S'(U)|

Theorem: Length minimal solution is at most doubly exponential

Conjecture: at most exponential ⇒ in NP (widely believed)

Intuition: recompression

• Think of new letters as nonterminals of a grammar

• We build a grammar for both strings, bottom-up.

• Everything is compressed in the same way!

while U ∉ Σ and V ∉ Σ do 
	 L ← letters from S(U) = S(V) 
	 for ab ∈ L2 or a ∈ L do 
	 	 replace all occurrences of ab in S(U) and S(V) 
	 	 (or replace all occurrences of runs of a)

Idea

How to do it for an equation?

XbaYb = baaababbab has a solution S(X) = baaa , S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab	 for S(X) = baaa S(Y) = bba

Xc Y b=c aac bc b	 for S(X) = c aa S(Y) = bc

Idea at work

And what about replacing ab by d?

XbaYb = baaababbab has a solution S(X) = baaa , S(Y) = bba

There is a problem with `crossing pairs'. We will fix it!

Occurrence of ab in a solution string (so for a fixed solution) is

• explicit it comes from U or V;

• implicit comes solely from S(X) ;

• crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

Pair types

 X baa Y b 	 = baaabaabbab	 	 S(X) = baaa S(Y) = bba

baaa baa bba b	 = baaabaabbab	 	 explicit	 	 	 	

baaa baa bba b	 = baaabaabbab	 	 implicit

baaa baa bba b	 = baaabaabbab	 	 crossing

Compression of non-crossing pairs
PairComp (a, b)

	 let c ∈ Σ be an unused letter

	 replace each explicit ab in U and V by c

Lemma: PairComp (a, b) is sound

If ab is noncrossing: it is complete.

Nondeterminism: assumption that ab is noncrossing

Completeness
define S'(X): S(X) with every ab replaced with c

Lemma: S'(U') is S(U) with every ab replaced; similarly S'(V')

explicit pairs	 replaced explicitly

implicit pairs	 replaced implicitly (in the substitution)

crossing pairs	 there are none

 X baa Y b=baaabaabbab	 S(X) = baaa S(Y) = bba

baaa baa bba b=baaabaabbab

 c aa c a b c b= c aa c ab c b

 X c a Y b= c aa c ab c b	 S'(X) = caa S'(Y) = bc

Soundness
define S(X): S'(X) with every c replaced with ab

Lemma: S(U) is S'(U') with every c replaced by ab; similarly S(V)

explicit c 	 replaced explicitly

implicit c	 replaced implicitly (in the substitution)

 X c a Y b= c aa c ab c b	 S'(X) = caa S'(Y) = bc

 c aa c a b c b= c aa c ab c b

baaa baa bba b=baaabaabbab

 X baa Y b=baaabaabbab	 S(X) = baaa S(Y) = bba

Dealing with crossing pairs
ab is a crossing pair ⇔ there is X s.t. S(X) = bw and aX occurs in U = V (or symmetric).
Uncrossing(a, b)

for variable X do

	 if first letter of S(X) is b then

	 	 replace each occurrence of X by bX	 \\Pop; S changes accordingly

	 if S(X) is empty then remov	e X from the equation

	 perform symmetrically for the last letter and a

Lemma After uncrossing ab is no longer crossing ⇒ we can compress it

Uncrossing: example

 X baa Y b 	 = baaabaabbab	 	 S(X) = baaa S(Y) = bba

baaa baa bba b	 = baaabaabbab	 	

baaa baa bba b	 = baaabaabbab	 	

bX a baa bYa b 	 = baaabaabbab	 	 S'(X) = aa S'(Y) = b 	

Maximal blocks
Maximal block of a: when ak occurs in S(U) = S(V) and cannot be extended.

Block occurrence can be explicit, implicit or crossing.

Letter a is crossing (has a crossing block) if there is a crossing block of a.

 X baaa Y b 	 = baabaaabbb	 	 S(X) = baab S(Y) = bb

baab baaa bb b	 = baabaaabbb	 	 	

Lemma If ak is a maximal block in a length-minimal solution of U = V then k ≤ 2c|UV|.

Blocks compression
When a has no crossing block

for all maximal blocks ak of a and k > 1 do

	 let ak ∈ Σ be an unused letter

	 replace each explicit maximal ak in U = V by ak

Lemma BlockComp(a) is sound. 
If a is noncrossing then it is complete

 X baaa Y b 	 = baabaaabbb	 	 S(X) = baab S(Y) = bb

baab baaa bb b	 = baabaaabbb	

b a2b b a3 bb b	 = b a2b a3 bbb

 X b a3 Y b 	 = b a2b a3 bbb	 	 S'(X) = ba2b S'(Y) = bb

Crossing a-blocks?
As for pairs? Popping a single a: not enough

pop whole a-prefix and a-suffix:

S(X) = al w ar : change it to S(X) = w

for variable X do

	 replace each occurrence of X by al X ar 	 \\ al, ar: the a-prefix a-suffix of S(X)

if S(X) is empty then

	 remove X from the equation

Lemma: After uncrossing a is no longer crossing.

while U ∉ Σ and V ∉ Σ do 
	 L ← letters from S(U) = S(V) 
	 choose ab ∈ L2 or a ∈ L	 	 \\ very flexible about the order 
	 	 if it is crossing then 
	 	 	 uncross it 
	 	 compress it

The algorithm

Soundness
If the new equation has a solution, then also the original one had.

Just roll back the changes.

 X c a Y b= c aa c ab c b	 S'(X) = caa S'(Y) = bc

 c a a c a b c b= c aa c ab c b

baa abaa bba b=baaabaabbab

 X baa Y b=baaabaabbab	 S(X) = baaa S(Y) = bba

Completeness
Equation has the solution, then 
for some nondeterministic choices the new equation has a corresponding one.

Make the choices according to the solution.

What about termination?

Termination
We show that

• we stay in O(n2) space. (can be O(n))

• after each operation the length-minimal solution shortens.

Terminate on positive instances. 
Explore whole space for negative instances.

Lemma: Each compression decreases the length of the length-minimal solution

We perform the compression on the solution word: 
	 there is a shorter solution 
	 the shortest may be even shorter

Strategy
Lemma: Compression of a non-crossing pair/block decreases equation's size.

Something is compressed in the equation.

Strategy:

• If there is something non-crossing: compress it.

• If there are only crossing: choose one that minimises the equation.

Lemma: There are at most 2n different crossing pairs and blocks. (For a fixed solution)

	 Each is associated with a side of an occurrence of a variable.

Lemma: Uncrossing introduces at most 2n letters to the equation.

	 Each variable pops left and right one letter 
	 for a-blocks: it is compressed immediately afterwards.

Lemma: There is always a choice to be ≤ 8n2.

There are m ≤ 8n2 letters in the equation and k ≤ 2n different crossing blocks/pairs.

Some covers ≥ m/k letters.

Its compression removes ≥ (m/k)/2 = m/2k letters and introduces 2n letters.

We are left with at most

m – m/2k + 2n = (1 – 1/2k) · m + 2n ≤ (1 − 1/4n) · 8n2 + 2n = 8n2

• representation, not combinatorial properties.

Remarks

• robust:

	 different variant of compressions

	 order of operations

	 …

• bottom-up: difficult in practice.

• heavy non-determinism.

• spoils lengths

Regular constraints: which formalism?

User likes: X ∈ r ∧ X ∈ r' ∧ X ∉ r'' 
	 r described in some way (DFA, NFA, RE, …)

Theory likes: transition matrices (or transition monoid)

Regular constraints

• Boolean matrices for words

• M(w)pq = 1 ⇔ we can go from q to p by w.

• Concatenation: Boolean matrix multiplication

• Constraint: give M(X), require M(S(X)) = M(X)
Can translate (at some cost).

Keep M(X) in the algorithm, compute M(c) for new letters

Tasks:

