### **Theory I: The Essentials** Word equations

- what can be done (and how)
- what cannot be done (in general)
- what is unknown (open)

Matthew Hague, Artur Jeż, Anthony Widjaja Lin, Philipp Ruemmer

# **Theoretical perspective**

String solving = solving Equations + constraints

Word equations (with constraints)

Complexity (decidability): depends on constraint types

- regular constraints: PSPACE
- CFG constraints, letter-counting: undecidable
- linear length constraints: open



# String equations and inequations, ex. theory

- Equation: U = V, where U, V are solving the second state  $U \neq V$ .
- If  $U \neq V$  then
- U is longer: U = VaU' for some a (letter), U' (variable) or
- V is longer: V = UaV' for some a (letter), V' (variable) or
- first difference U = WaU', V = WbV' for  $a \neq b$  (letters) and W, U', V' (new variables)

Nondeterministic reduction.

Existential Theory algorithm: remove alternative (guess), remove inequations (guess) Left with system of eqautions.

U = V, where U, V are sequences of letters ( $\Sigma$ ) and variables



### Lentin/Plotkin/Siekman algorithm; Nielsen's transform; Matyasevich

$$X... = Y..$$

- $a \neq b$  (contradiction)
- $x \sqsubset y$  (prefix)  $\Rightarrow$   $y \leftarrow xy$

• 
$$y \sqsubset x$$
 (prefix)  $\Rightarrow x \leftarrow yx$ 

•  $X = \varepsilon$  or  $Y = \varepsilon$ 

Choose, substitute and delete leading symbols

Used in practice (esp.: restricted instances)

Sound

Satisfiable  $\Rightarrow$  complete

Unsatisfiable  $\Rightarrow$ ? contradictions or explore whole search space

### ete leading symbols es)



### **Plotkin's algorithm is complete on quadratic equations**



### Makanin's algorithm First decidability in the general case

Generalizes the Plotkin algorithm (keeps much more info) Extends to regular constraints

- complex
- high complexity
- proof: difficult string combinatorics
- difficult to generalize

### **Restricted classes**

Better algorithms for restricted classes

- quadratic equations (each variable occurs twice)
- two variables
- one variable
- . . .

### **Undecidable constraints**

- CFG constraints: intersection of CFGs
- letter-counting constraints (linear):

 $|X|_a = 1 + 2|X|_b$ 

encodes Diophantine equations

Encoding in string equations is difficult

# Length constraints

|X| = 1 + 2|Y|

### **Big open problem in the area**

The known algorithms change/spoil lengths

The undecidability of letter-counting does not translate



# **Compression enters the stage**

Plandowski '98 PSPACE

Generelizes reasonably (regular constraints, reversal, ...)

Jeż '12: simpler algorithm and analysis:

- good on its own
- → very robust: generalizes very well

We give the algoritm and proof (no constraints)

### Some notation and basics

- X, Y, Z ... variables
- *a, b, c*: letters Σ: alphabet
- S: substitution (of variables by strings) S(X)
- S: extends to sequences of letters and variables
- S: solution of U = V when S(U) = S(V) (solution string)
- S: length-minimal solution: for all solutions S'  $|\mathsf{S}(U)| \leq |\mathsf{S}'(U)|$

**Theorem:** Length minimal solution is at most doubly exponential

**Conjecture**: at most exponential  $\Rightarrow$  in NP (widely believed)

# a a a b a b c a b a b b a b c b aa a a b a b c a b a b b a b c b a





# a a a b a b c a b a b b a b c b a





# a b a b c a b a b b a b c b a a b a b c a b a b b a b c b a





# $a_3$ $b a b c a b a b_2 a b c b a$













Intuition: recompression

- Think of new letters as nonterminals of a grammar
- We build a grammar for both strings, bottom-up.
- Everything is compressed in the same way!



### Idea

### while $U \notin \Sigma$ and $V \notin \Sigma$ do L $\leftarrow$ letters from S(U) = S(V)for $ab \in L^2$ or $a \in L$ do (or replace all occurrences of runs of *a*)

How to do it for an equation?

replace all occurrences of *ab* in S(U) and S(V)

### Idea at work

XbaYb = baaababbab has a solution S(X) = baaa, S(Y) = bbaWe want to replace pair ba by a new letter c. Then XbaY b=baaababbab Xc Yb=c aac bc b And what about replacing ab by d? XbaYb = baaababbab has a solution S(X) = baaa, S(Y) = bbaThere is a problem with crossing pairs'. We will fix it!

- for S(X) = baaa S(Y) = bba
- for S(X) = c as S(Y) = bc

# **Pair types**

Occurrence of ab in a solution string (so for a fixed solution) is

- explicit it comes from U or V;
- implicit comes solely from S(X);
- crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

- baa Y b = baaabaabbabX
- baaa baa bba b = baaabaabbab
- baaa baa bba b = baaabaabbab
- baaa baa bba b = baaabaabbab

S(X) = baaa S(Y) = bbaexplicit implicit crossing

# **Compression of non-crossing pairs**

PairComp (a, b)

let  $c \in \Sigma$  be an unused letter

replace each explicit ab in U and V by c

### **Lemma**: PairComp (a, b) is sound If *ab* is noncrossing: it is complete.

Nondeterminism: assumption that ab is noncrossing

### Completeness

define S'(X): S(X) with every ab replaced with c

**Lemma:** S'(U') is S(U) with every *ab* replaced; similarly S'(V')

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the substitution)

crossing pairs there are none

baa Y b=baaabaabbab X

baaa baa bba b=baaabaabbab

c aa c a b c b = c aa c ab c b

 $X \quad c \quad a \quad Y \quad b = c \quad a \quad a \quad c \quad b \quad c \quad b$ 

S(X) = baaa S(Y) = bba

S'(X) = caa S'(Y) = bc

### Soundness

define S(X): S'(X) with every c replaced with ab **Lemma**: S(U) is S'(U') with every c replaced by ab; similarly S(V)explicit c replaced explicitly replaced implicitly (in the substitution) implicit c

X ca Y b = c aa c ab c b S'(X) = caa S'(Y) = bcc aa c a b c b = c aa c ab c bbaaa baa bba b=baaabaabbab baa Y b=baaabaabbab

S(X) = baaa S(Y) = bba

# **Dealing with crossing pairs**

Uncrossing(a, b)

for variable X do

if first letter of S(X) is b then

if S(X) is empty then remove X from the equation

perform symmetrically for the last letter and a

**Lemma** After uncrossing *ab* is no longer crossing  $\Rightarrow$  we can compress it



# replace each occurrence of X by $bX \wedge Pop$ ; S changes accordingly





### Uncrossing: example

- X baa Y b = baaabaabbab
- baaa baa bba b = baaabaabbab
- baaa baa bba b = baaabaabbab
- bX a baa bYa b = baaabaabbab

### S(X) = baaa S(Y) = bba

### S'(X) = aa S'(Y) = b

### Maximal blocks

Maximal block of a: when  $a^k$  occurs in S(U) = S(V) and cannot be extended.

Block occurrence can be explicit, implicit or crossing.

Letter a is crossing (has a crossing block) if there is a crossing block of a.

baaa Y b = baabaaabbb X

baab baaa bb b = baabaaabbb

$$S(X) = baab S(Y) = bb$$

**Lemma** If  $a^k$  is a maximal block in a length-minimal solution of U = V then  $k \leq 2^{c|UV|}$ .

## **Blocks compression**

When a has no crossing block

for all maximal blocks  $a^k$  of a and k > 1 do

let  $a_k \in \Sigma$  be an unused letter

replace each explicit maximal  $a^k$  in U = V by  $a_k$ 

**Lemma** BlockComp(a) is sound. If a is noncrossing then it is complete

- baaa Y b = baabaaabbb X
- baab baaa bb b = baabaaabbb
- $b a_2 b b a_3 b b b = b a_2 b a_3 b b b$ 
  - $X \quad b a_3 \quad Y \quad b = b a_2 b a_3 \quad b b b$

### S(X) = baab S(Y) = bb

 $S'(X) = ba_2b S'(Y) = bb$ 

## Crossing a-blocks?

As for pairs? Popping a single a: not enough pop whole *a*-prefix and *a*-suffix:

S(X) = a' w a' : change it to S(X) = w

for variable X do

replace each occurrence of X by a' X ar

if S(X) is empty then

remove X from the equation

**Lemma:** After uncrossing *a* is no longer crossing.

### $\langle a', a' \rangle$ the a-prefix a-suffix of S(X)



## The algorithm

while  $U \notin \Sigma$  and  $V \notin \Sigma$  do  $L \leftarrow$  letters from S(U) = S(V)choose  $ab \in L^2$  or  $a \in L$ if it is crossing then uncross it compress it

### \\ very flexible about the order

### Soundness

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X ca Y b = c aa c ab c b S'(X) = caa S'(Y) = bcc a a c a b c b = c a a c a b c bbaa abaa bba b=baaabaabbab X baa Y b=baaabaabbab

### S(X) = baaa S(Y) = bba

## Completeness

Equation has the solution, then for some nondeterministic choices the r

for some nondeterministic choices the new equation has a corresponding one. Make the choices according to the solution.

What about termination?

### Termination We show that

- we stay in  $O(n^2)$  space. (can be O(n))
- after each operation the length-minimal solution shortens.

Terminate on positive instances. Explore whole space for negative instances.

Lemma: Each compression decreases the length of the length-minimal solution

We perform the compression on the solution word: there is a shorter solution the shortest may be even shorter

# Strategy

**Lemma:** Compression of a non-crossing pair/block decreases equation's size.

Something is compressed in the equation.

Strategy:

- If there is something non-crossing: compress it.
- If there are only crossing: choose one that minimises the equation.

**Lemma**: There are at most 2n different crossing pairs and blocks. (For a fixed solution)

Each is associated with a side of an occurrence of a variable.

**Lemma**: Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter for *a*-blocks: it is compressed immediately afterwards.

**Lemma:** There is always a choice to be  $\leq 8n^2$ .

There are  $m \leq 8n^2$  letters in the equation and  $k \leq 2n$  different crossing blocks/pairs.

Some covers  $\geq m/k$  letters.

Its compression removes  $\geq (m/k)/2 = m/2k$  letters and introduces 2n letters.

We are left with at most

 $m - m/2k + 2n = (1 - 1/2k) \cdot m + 2n \le (1 - 1/2k)$ 

$$-1/4n$$
)  $\cdot 8n^2 + 2n = 8n^2$ 

### Remarks

- representation, not combinatorial properties.
- robust:

different variant of compressions order of operations

- bottom-up: difficult in practice.
- heavy non-determinism.
- spoils lengths

. . .

## **Regular constraints**

Regular constraints: which formalism?

User likes:  $X \in r \land X \in r' \land X \notin r''$ r described in some way (DFA, NFA, RE, ...)

Theory likes: transition matrices (or transition monoid)

- Boolean matrices for words
- $M(w)_{pq} = 1 \Leftrightarrow we \ can \ go \ from \ q \ to \ p \ by \ w.$
- Concatenation: Boolean matrix multiplication
- Constraint: give M(X), require M(S(X)) = M(X)

Can translate (at some cost).

Keep M(X) in the algorithm, compute M(c) for new letters



### Tasks: