
Theory I: The Essentials

• what can be done (and how)


• what cannot be done (in general)


• what is unknown (open) 
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Word equations



Theoretical perspective
String solving = solving Equations + constraints


	 Word equations (with constraints)

Complexity (decidability): depends on constraint types


• regular constraints: PSPACE


• CFG constraints, letter-counting: undecidable


• linear length constraints: open 



Equation: 	 U = V, where U, V are sequences of letters (Σ) and variables 
Inequation:	 U ≠ V

String equations and inequations, ex. theory

Nondeterministic reduction.


Existential Theory algorithm: remove alternative (guess), remove inequations (guess) 
Left with system of eqautions. 

If U ≠ V then 

• U is longer: U = VaU'  for some a (letter), U' (variable) or


• V is longer: V = UaV'  for some a (letter), V' (variable) or


• first difference U = WaU', V = WbV' for a ≠ b (letters) and W, U', V' (new variables)



Lentin/Plotkin/Siekman algorithm; Nielsen's transform; Matyasevich
x… = y… 
• a ≠ b (contradiction) 

•  x ⊏ y (prefix) ⇒ y ← xy


•  y ⊏ x (prefix) ⇒ x ← yx 

• x = ε or y = ε 
Choose, substitute and delete leading symbols

Used in practice (esp.: restricted instances)


Sound


Satisfiable ⇒ complete


Unsatisfiable ⇒ ?		 contradictions or explore whole search space



Plotkin's algorithm is complete on quadratic equations
abXcY = YcXba bXcaY = YcXba

Y ←aY

abXc = cXba
Y ← ε

Y ← ε
bXca = cXba

Y ← bY

XcabY = YcXba
X ← YX

XcabY = cYXba

Y ← XY

cabXY = YcXba

abX = Xba
Y ← ε

abY = Yba
X ← ε

X ← aX

baX = Xba
X ← bX Y ← aYY ← bY

baY = Yab

ba = ba

X ← ε Y ← ε

X ← cX

Y ←cY

X ← ε ab = ba Y ← ε



Makanin's algorithm

Generalizes the Plotkin algorithm (keeps much more info)


Extends to regular constraints 

First decidability in the general case

• complex


• high complexity


• proof: difficult string combinatorics


• difficult to generalize



Restricted classes

Better algorithms for restricted classes


• quadratic equations (each variable occurs twice)


• two variables


• one variable


• …



Undecidable constraints
• CFG constraints: intersection of CFGs


• letter-counting constraints (linear):


	 |X|a = 1 + 2|X|b


	 encodes Diophantine equations


• …

Encoding in string equations is difficult



Length constraints
|X| = 1 + 2|Y|

Big open problem in the area 

The known algorithms change/spoil lengths


The undecidability of letter-counting does not translate



 Compression enters the stage
Plandowski '98 PSPACE


Generelizes reasonably (regular constraints, reversal, …) 

Jeż '12: simpler algorithm and analysis:


• good on its own


• ⇒ very robust: generalizes very well


We give the algoritm and proof (no constraints)



Some notation and basics
X, Y, Z … variables


a, b, c: letters	 Σ: alphabet


S: substitution (of variables by strings) S(X)


S: extends to sequences of letters and variables


S: solution of U = V when S(U) = S(V) (solution string)

S: length-minimal solution: for all solutions S'


	 |S(U)| ≤ |S'(U)|


Theorem: Length minimal solution is at most doubly exponential

Conjecture: at most exponential ⇒ in NP (widely believed)















Intuition: recompression


• Think of new letters as nonterminals of a grammar


• We build a grammar for both strings, bottom-up.


• Everything is compressed in the same way!



while U ∉ Σ and V ∉ Σ do 
	 L ← letters from S(U) = S(V) 
	 for ab ∈ L2 or a ∈ L do 
	 	 replace all occurrences of ab in S(U) and S(V) 
	 	 (or replace all occurrences of runs of a)

Idea

How to do it for an equation?



XbaYb = baaababbab has a solution S(X) = baaa , S(Y) = bba


We want to replace pair ba by a new letter c. Then


XbaY b=baaababbab	 for S(X) = baaa S(Y) = bba 

Xc  Y b=c  aac  bc  b	 for S(X) = c  aa S(Y) = bc

Idea at work

And what about replacing ab by d?


XbaYb = baaababbab has a solution S(X) = baaa , S(Y) = bba 

There is a problem with `crossing pairs'. We will fix it! 



Occurrence of ab in a solution string (so for a fixed solution) is 

• explicit it comes from U or V;


• implicit comes solely from S(X) ;


• crossing in other case.


ab is crossing if it has a crossing occurrence, non-crossing otherwise.

Pair types

   X    baa   Y  b 	 = baaabaabbab	 	 S(X) = baaa S(Y) = bba 

baaa baa bba b	 = baaabaabbab	 	 explicit	 	 	 	  

baaa baa bba b	 = baaabaabbab	 	 implicit 

baaa baa bba b	 = baaabaabbab	 	 crossing



Compression of non-crossing pairs
PairComp (a, b)


	 let c ∈ Σ be an unused letter


	 replace each explicit ab in U and V by c

Lemma: PairComp (a, b) is sound


If ab is noncrossing: it is complete.

Nondeterminism: assumption that ab is noncrossing



Completeness
define S'(X): S(X) with every ab replaced with c 

Lemma: S'(U') is S(U) with every ab replaced; similarly S'(V')


explicit pairs	 replaced explicitly


implicit pairs	 replaced implicitly (in the substitution)


crossing pairs	 there are none

   X    baa   Y  b=baaabaabbab	 S(X) = baaa S(Y) = bba 

baaa baa bba b=baaabaabbab 

 c aa  c a b c  b= c aa c ab c b 

   X    c a   Y   b= c aa c ab c b	 S'(X) = caa S'(Y) = bc



Soundness
define S(X): S'(X) with every c replaced with ab 

Lemma: S(U) is S'(U') with every c replaced by ab; similarly S(V)


explicit c 	 replaced explicitly


implicit c	 replaced implicitly (in the substitution)

   X    c a   Y   b= c aa c ab c b	 S'(X) = caa S'(Y) = bc 

 c aa  c a b c  b= c aa c ab c b 

baaa baa bba b=baaabaabbab 

   X    baa   Y  b=baaabaabbab	 S(X) = baaa S(Y) = bba



Dealing with crossing pairs
ab is a crossing pair ⇔ there is X s.t. S(X) = bw and aX occurs in U = V (or symmetric).
Uncrossing(a, b)


for variable X do


	 if first letter of S(X) is b then


	 	 replace each occurrence of X by bX	   \\Pop; S changes accordingly


	 if S(X) is empty then remov	e X from the equation


	 perform symmetrically for the last letter and a

Lemma After uncrossing ab is no longer crossing ⇒ we can compress it



Uncrossing: example

   X    baa   Y  b 	 = baaabaabbab	 	 S(X ) = baaa S(Y ) = bba 

baaa baa bba b	 = baaabaabbab	 	 


baaa baa bba b	 = baaabaabbab	 	  

bX a baa bYa  b 	 = baaabaabbab	 	 S'(X) =  aa    S'(Y) =  b 	



Maximal blocks
Maximal block of a: when ak occurs in S(U) = S(V) and cannot be extended.

Block occurrence can be explicit, implicit or crossing.


Letter a is crossing (has a crossing block) if there is a crossing block of a.

   X    baaa  Y  b 	 = baabaaabbb	 	 S(X ) = baab S(Y ) = bb 

baab baaa bb b	 = baabaaabbb	 	 	

Lemma If ak is a maximal block in a length-minimal solution of U = V then k ≤ 2c|UV|.



Blocks compression
When a has no crossing block


for all maximal blocks ak of a and k > 1 do


	 let ak ∈ Σ be an unused letter


	 replace each explicit maximal ak in U = V by ak

Lemma BlockComp(a) is sound. 
If a is noncrossing then it is complete

   X    baaa  Y  b 	 = baabaaabbb	 	 S(X) = baab S(Y) = bb 

baab baaa bb b	 = baabaaabbb	  

b a2b b a3 bb b	 = b a2b a3 bbb 

   X    b a3   Y  b 	 = b a2b a3 bbb	 	 S'(X) = ba2b S'(Y) = bb



Crossing a-blocks?
As for pairs? Popping a single a: not enough 

pop whole a-prefix and a-suffix:


S(X) = al w ar  : change it to S(X) = w

for variable X do


	 replace each occurrence of X by al X ar  	 \\ al, ar: the a-prefix a-suffix of S(X)


if S(X) is empty then


	 remove X from the equation

Lemma: After uncrossing a is no longer crossing.



while U ∉ Σ and V ∉ Σ do 
	 L ← letters from S(U) = S(V) 
	 choose ab ∈ L2 or a ∈ L	 	 \\ very flexible about the order 
	 	 if it is crossing then 
	 	 	 uncross it 
	 	 compress it

The algorithm



Soundness
If the new equation has a solution, then also the original one had.

Just roll back the changes.

  X     c a   Y   b= c aa c ab c b	 S'(X ) = caa S'(Y ) = bc 

 c a a c a b c  b= c aa c ab c b 

baa abaa bba b=baaabaabbab 

   X   baa   Y   b=baaabaabbab	 S(X ) = baaa S(Y ) = bba



Completeness
Equation has the solution, then 
for some nondeterministic choices the new equation has a corresponding one.


Make the choices according to the solution.

What about termination?



Termination
We show that


• we stay in O(n2) space. (can be O(n))


• after each operation the length-minimal solution shortens.


Terminate on positive instances. 
Explore whole space for negative instances.

Lemma: Each compression decreases the length of the length-minimal solution


We perform the compression on the solution word: 
	 there is a shorter solution 
	 the shortest may be even shorter



Strategy
Lemma: Compression of a non-crossing pair/block decreases equation's size.


Something is compressed in the equation.

Strategy:


• If there is something non-crossing: compress it.


• If there are only crossing: choose one that minimises the equation.



Lemma: There are at most 2n different crossing pairs and blocks. (For a fixed solution)


	 Each is associated with a side of an occurrence of a variable.


Lemma: Uncrossing introduces at most 2n letters to the equation.


	 Each variable pops left and right one letter 
	 for a-blocks: it is compressed immediately afterwards.


Lemma: There is always a choice to be ≤ 8n2.

There are m ≤ 8n2 letters in the equation and k ≤ 2n different crossing blocks/pairs.


Some covers ≥ m/k letters.


Its compression removes ≥ (m/k)/2 = m/2k letters and introduces 2n letters.


We are left with at most


m – m/2k + 2n  = (1 – 1/2k) · m + 2n ≤ (1 − 1/4n) · 8n2 + 2n = 8n2



• representation, not combinatorial properties.

Remarks

• robust: 


	 different variant of compressions


	 order of operations


	 …

• bottom-up: difficult in practice.


• heavy non-determinism.


• spoils lengths



Regular constraints: which formalism?


User likes: X ∈ r ∧ X ∈ r' ∧ X ∉ r'' 
	 r described in some way (DFA, NFA, RE, …)


Theory likes: transition matrices (or transition monoid)

Regular constraints

• Boolean matrices for words 


• M(w)pq = 1 ⇔ we can go from q to p by w.


• Concatenation: Boolean matrix multiplication


• Constraint: give M(X), require M(S(X)) = M(X)
Can translate (at some cost).


Keep M(X) in the algorithm, compute M(c) for new letters



Tasks:


