String Solving Strategies

Straight-Line Fragment

Simplified Syntax

Rewrite constraints to use simple terms. Conjunctions of

- concatenation: $\mathrm{X}=\mathrm{Y} \mathrm{Z}$
- regular tests: $X \in r$

Write a sequences ϕ, Ψ instead of conjunctions $\phi \wedge \Psi$
E.g.

$$
b X=X c Y \wedge X \in a b * c
$$

becomes

$$
Z=B X, \quad B \in b, \quad Z=X Z^{\prime}, \quad Z^{\prime}=C Y, \quad C \in c, \quad X \in a b^{*} c
$$

Boolean Combinations

We can generalise to arbitrary boolean combinations of terms

$$
\Phi, \Phi^{\prime}:=X=Y Z|X \in r| \phi \wedge \phi^{\prime}\left|\phi \vee \Phi^{\prime}\right| \neg \phi
$$

Two quick ways to see this:

- Disjoint Normal Form
- Rewrite Φ into a disjunction of conjunctions
- Consider each conjunction in turn
- DPLL[T] / SMT solving
- Explore Boolean structure via DPLL algorithm
- Test feasibility of conjunctive queries

Proof System

Our approach to solving constraints is to use a proof system

1. start with a constraint
2. apply proof rules
3. find a contradiction or a solution

This gives a search problem: apply rules until you find the answer

Rules applied non-deterministically
We will discuss deterministic strategies at the end

Proof Rules Syntax

A simple proof rule is

If we have $\Phi \wedge \Psi$ we can derive both Φ and Ψ

A rule that creates two branches:

- find a solution on one of them, or

- find a contradiction on all of them

Constraint Propagation

For each

$$
X=Y Z
$$

Forwards propagation

- Push constraints on Y and Z into a constraint on X

Backwards propagation

- Pull constraint on X back into constraints on Y and Z

String Functions

Concatenation is a string function

$$
X=Y Z \longrightarrow X=\operatorname{concat}(Y, Z)
$$

More generally, any function could appear

$$
X=f\left(X_{1}, \ldots, X_{n}\right)
$$

where f is some function with input $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$.

Forwards Propagation

Forwards Propagation (concat)

Suppose

$$
\ldots, X=Y Z, Y \in r_{1}, Z \in r_{2}, \ldots
$$

We can infer that also

$$
X \in r_{1} r_{2}
$$

Or in fact
for any r with

$$
X \in r \quad L(r)-- \text { set of words matching } r
$$

$$
L(r)=\operatorname{concat}\left(L\left(r_{1}\right), L\left(r_{2}\right)\right)
$$

As a Proof Rule

Forwards Propagation in General

Suppose

$$
\ldots, \quad X=f\left(X_{1}, \ldots, X_{n}\right), \quad X_{1} \in r_{1}, \ldots, \quad X_{n} \in r_{n}, \ldots
$$

and
$f\left(L\left(r_{1}\right), \ldots, L\left(r_{n}\right)\right)=L(r)$ for some regular expression r
Add constraint $X \in r$

$$
\ldots, X \in r, \quad X=f\left(X_{1}, \ldots, X_{n}\right), \quad X_{1} \in r_{1}, \ldots, \quad X_{n} \in r_{n}, \ldots
$$

As a Proof Rule

$$
\left.\uparrow \frac{\text { (new bit) }}{\ldots, X \in X_{1}, X\left(X_{1}, \ldots, X_{n}\right), X_{1} \in r_{1}, \ldots, X_{n} \in r_{n}, \ldots} \quad L\left(X_{1}, \ldots, X_{n}\right), X_{1} \in r_{1}, \ldots, X_{n} \in r_{n}, \ldots\left(r_{1}\right), \ldots, L\left(r_{n}\right)\right)
$$

Visual Example

Solve via Forwards Propagation

$$
\begin{gathered}
Z_{1}=X Z_{2}, Z_{1}=C Y \\
C \in c, \quad X \in a b^{*} c, \quad Z_{1} \in b .
\end{gathered}
$$

Nousclation satisffatailtty frateexach variable

Constraint Elimination?

Suppose

$$
X=Y Y, \quad Y \in a^{*} b^{*}
$$

Notice

$$
L\left(a^{*} b^{*} a^{*} b^{*}\right)=\operatorname{concat}\left(L\left(a^{*} b^{*}\right), L\left(a^{*} b^{*}\right)\right)
$$

Propagate

$$
X \in a^{*} b^{*} a^{*} b^{*}, X=Y Y, Y \in a^{*} b^{*}
$$

An Overapproximation

$$
X \in a^{*} b^{*} a^{*} b^{*}, \quad X=Y Y, \quad Y \in a^{*} b^{*}
$$

Notice

- $X=$ abaabb satisfies $X \in a^{*} b^{*} a^{*} b^{*}$
- But not $X=Y Y$ for any value of Y

We need to keep $X=Y Y$ too

Backwards Propagation

Backwards Propagation (concat)

Suppose

$$
\ldots, \quad X \in r_{1} r_{2}, X=Y Z, \quad \ldots
$$

We can infer that also

$$
Y \in r_{1}, Z \in r_{2}
$$

Or in fact

$$
Y \in r_{3}, Z \in r_{4}
$$

for any r_{3}, r_{4} with

$$
\operatorname{concat}\left(L\left(r_{3}\right), L\left(r_{4}\right)\right)=L\left(r_{1} r_{2}\right)
$$

Backwards Propagation

Take constraint

$$
X \in a c^{*} d^{*} \wedge X=Y Z
$$

Pull the constraint on X back through $X=Y Z$

Other String Functions

Backwards propagation creates branching for concat
What other string functions can be supported?

Conditions on String Functions

Consider

$$
Z=\operatorname{concat}(X, Y)
$$

Given a regular language L , what is concat ${ }^{-1}(\mathrm{~L})$?

Conditions on String Functions

Consider

$$
X=f\left(X_{1}, \ldots, X_{n}\right)
$$

Given a regular language L, require $f^{-1}(L)$ is recognisable

$$
\begin{aligned}
& X_{1} \in r^{1}{ }_{1}, \quad \ldots, \quad X_{n} \in r^{1}{ }_{n} \\
& f^{-1}(L)=\bigcup_{i} L^{i_{1}} \times \ldots \times L^{i_{n}} \\
& \begin{array}{lll}
X_{1} \in r^{2}{ }_{1}, & \ldots, X_{n} \in r^{2}{ }_{n} \\
X_{1} \in r^{3}{ }_{1}, & \ldots, X_{n} \in r^{3}{ }_{n}
\end{array} \quad f\left(X_{1}, \ldots, X_{n}\right) \in r \\
& X_{1} \in r^{4} 1, \quad \ldots, \quad X_{n} \in r^{4} n \\
& X_{1} \in r^{5}, \quad \ldots, \quad X_{n} \in r^{5}{ }_{n}
\end{aligned}
$$

Proof Rule

$$
\ldots, X \in r, X=Y Z, Y \in r^{1} 2, Z \in r^{1} 2, \ldots \quad \ldots \quad \ldots, X \in r, X=Y Z, Y \in r^{n_{2}}, Z \in r^{n_{2}}, \ldots
$$

Example

$$
\phi:=W \in b, \quad Y \in b^{*} c^{*}, \quad Z \in a^{*} b^{*}
$$

$$
X=W, V Z=X Y
$$

$Y \in b^{*} c^{*}$

$W \in b$
$\mathrm{W} \in \mathrm{a}^{*} \mathrm{~b}$
We have finished propagating
There are no contradictions -- are we done?

With Proof Rules

$$
W \in b, Y \in b^{*} c^{*}, Z \in a^{*} b c^{*}, X=W, Z=X Y, X \in a^{*} b, Y \in c, X \in a^{*} b, Y \in c^{*}, W \in a^{*} b
$$

$\mathrm{W} \in \mathrm{b}, \mathrm{Y} \in \mathrm{b}^{*} \mathrm{c}^{*}, \mathrm{Z} \in \mathrm{a}^{*} \mathrm{bc}^{*}, \mathrm{X}=\mathrm{W}, \mathrm{Z}=\mathrm{X} Y, \mathrm{X} \in \mathrm{a}^{*} \mathrm{~b}, \mathrm{Y} \in \mathrm{c}$

$$
\mathrm{W} \in \mathrm{~b}, \mathrm{Y} \in \mathrm{~b}^{\star} \mathrm{c}^{\star}, \mathrm{Z} \in \mathrm{a}^{\star} \mathrm{bc} \mathrm{c}^{*}, \mathrm{X}=\mathrm{W}, \mathrm{Z}=\mathrm{X} \mathrm{Y}
$$

Other branches

Extracting Solutions

Extracting Solutions

Not all solutions to the regular constraints are correct

$$
\begin{gathered}
\mathrm{W} \in \mathrm{~b}, \quad \mathrm{Y} \in \mathrm{~b}^{*} \mathrm{c}^{*}, \quad \mathrm{Z} \in \mathrm{a}^{*} \mathrm{bc}^{*}, \\
\mathrm{X}=\mathrm{W}, \quad \mathrm{Z}=\mathrm{X} Y
\end{gathered}
$$

E.g.

$$
\begin{aligned}
X & =a b \\
Y & =c \\
Z & =b \\
W & =b
\end{aligned}
$$

Satisfies each node but not constraint

$$
(Z!=X Y)
$$

A Cut Rule

As part of the proof search we can introduce two branches

$$
X \in r \quad X \notin r
$$

for some regular expression r

Can be used to guess a solution

- Pick some w consistent with constraints on X
- Add $X \in w$ on one branch, $X \notin w$ on the other

Then propagate to other variables

As a Proof Rule

..., $X \in r$
..., $\mathrm{X} \notin \mathrm{r}$
...

Closing Branches

Constraints introduced via cut may be consistent or not

Close a branch if an inconsistency is found

$$
\ldots, X \in r_{1}, \ldots, X \in r_{n}, \ldots \text { with } L\left(r_{1}\right) \cap \ldots \cap L\left(r_{n}\right)=\varnothing
$$

Solution found if we have a "pure" solution

$$
x_{1} \in w_{1}, \ldots, \quad X_{n} \in w_{n}
$$

But how do we eliminate constraints?

As Proof Rules

Contradiction:

$$
\overline{\ldots, X \in r_{1}, \ldots, X \in r_{n}} L\left(r_{1}\right) \cap \ldots \cap L\left(r_{n}\right)=\varnothing
$$

Solution:

$$
X_{1} \in w_{1}, \ldots, \quad X_{n} \in w_{n}
$$

Eliminating Constraints

To end up with a pure solution

$$
X_{1} \in w_{1}, \quad \ldots, \quad X_{n} \in w_{n}
$$

We need to eliminate all other constraints.

Two methods

- Eliminate multiple regular constraints: $X \in r_{1}, \ldots, X \in r_{n}$
- Eliminate assignments: $X=f\left(X_{1}, \ldots, X_{n}\right)$

Eliminate Multiple Constraints

$$
X \in r_{1}, \quad . ., X \in r_{n}
$$

1. Replace with its intersection

$$
X \in r_{1} \cap \ldots \cap r_{n}
$$

2. Remove a subsumed constraint

$$
X \in r_{2}, \quad \ldots, X \in r_{n} \quad \text { when } \quad L\left(r_{2}\right) \cap \ldots \cap L\left(r_{n}\right) \subseteq L\left(r_{1}\right)
$$

Proof Rules

Subsumed:

$$
\ldots, X \in r_{2}, \ldots, X \in r_{n}
$$

$$
\ldots, X \in r_{1}, \ldots, X \in r_{n} \quad L\left(r_{2}\right) \cap \ldots \cap L\left(r_{n}\right) \subseteq L\left(r_{1}\right)
$$

Eliminate Function Assignments

$$
X=f\left(X_{1}, \ldots, X_{n}\right)
$$

Eliminating version of forwards propagation
Suppose

$$
\ldots, \quad X=f\left(X_{1}, \ldots, X_{n}\right), \quad X_{1} \in r_{1}, \quad \ldots, \quad X_{n} \in r_{n}, \ldots
$$

and

$$
f\left(L\left(r_{1}\right), \ldots, L\left(r_{n}\right)\right)=L(r) \text { for some regular expression } r
$$

If $L(r)$ only has one solution, replace $X=f\left(X_{1}, \ldots, X_{n}\right)$ with $X \in r$

$$
\ldots, X \in r, X_{1} \in r_{1}, \ldots, X_{n} \in r_{n}, \ldots
$$

Proof Rules

$$
\begin{gathered}
\text { (we dropped } \left.X=f\left(X_{1}, \ldots, X_{n}\right)\right) \\
\ldots, X, X=r, \quad X_{1} \in r_{1}, \ldots, \quad X_{n} \in r_{n}, \ldots
\end{gathered} \quad L(r)=f\left(L\left(r_{1}\right), \ldots, L\left(r_{n}\right)\right)
$$

Deriving Solutions

Eliminate via intersection Pick value for node $c \cap c^{*} \cap b^{*} c^{*}=c$

With Proof Rules

$$
W \in b, X \in b, Z \in b c, Y \in c
$$

$W \in b, Z \in a^{*} b c^{*}, X \in b, Z \in b c, Y \in c, X \in a * b$

$$
W \in b, Z \in a^{*} b c^{*}, X \in b, Z=X Y, Y \in c, X \in a^{*} b
$$

$W \in b, Z \in a^{*} b c^{*}, X \in b, Z=X Y, X \in a^{*} b, Y \in c, X \in a * b$
F-Elim $\mathrm{X}=\mathrm{W}$

$$
W \in b, Z \in a^{*} b c^{*}, X=W, Z=X Y, X \in a^{*} b, Y \in c, X \in a^{*} b
$$

$$
W \in b, Z \in a^{*} b c^{*}, X=W, Z=X Y, X \in a^{*} b, Y \in c, X \in a * b, W \in a * b
$$

$W \in b, Y \in b^{*} c^{*}, Z \in a^{*} b c^{*}, X=W, Z=X Y, X \in a^{*} b, Y \in c, X \in a^{*} b, Y \in c^{*}, W \in a^{*} b$

Forwards or Backwards?

Comparing Propagation Direction

We've seen forwards and backwards propagation.
Forwards:

- Regular inputs lead to regular outputs
- But had to overapproximate e.g. concatenation
- No branching required

Backwards:

- Regular outputs lead exactly to recognisable inputs
- No approximation
- Branching required

Functions Supporting Backwards

Some common string functions support backwards propagation

- Concatenation
- Reverse
- Replace(All)
- $\mathrm{X}=$ ReplaceAll($\left.\mathrm{Y}, \mathrm{e}_{1}, \mathrm{e}_{2}\right)$
- $e_{1}--$ a string or regular expression (with capture groups)
- $e_{2}--$ a string, or variable, or replacement pattern (using capture groups)
- Transductions (e.g. HTML escape)

Completeness

Proof Search

Our proof rules are sound

- We find only correct answers

Not necessarily complete

- Propagation may not terminate
- Cut rule introduces infinite alternatives

Currently we've shown proof rules but no strategy
That is, apply the rules non-deterministically to solve a constraint.
Can we provide an algorithm with guarantees?

Complete Fragments

Implementations needs to apply rules algorithmically

1. Apply forwards propagation until fixed point

- Complete for constraints with the "tree property" [Kan etal, CPP 2022]

2. Apply backwards propagation once (then extract solutions)

- Complete for "straight-line" (see later) [Chen et al, POPL 2022]

3. "Chain-free" fragment

- More complex mix of forward and backwards [Abdulla etal, ATVA 2019]

Straight-Line Constraints

Straight Line Conjunctions

A constraint is straight-line if all of its conjunctions are straight-line

Conjunctions are "SSA" (Single Static Assignment): each variable assigned once.

A conjunction is straight-line if

- Each variable appears on the LHS at most once
- Variables can be ordered $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- If $X_{i}=\ldots X_{j}$... then $\mathrm{j}<\mathrm{i}$

Examples

Straight-line:
$\begin{aligned} & X \in a^{*} b^{*}, \\ & Y=X X, \\ & Y \in a b a b *, \\ & Z=X Y, \\ & Z \in a b a b a b\end{aligned}$$\quad \begin{aligned} & X \in a^{*} b^{*}, \\ & Y=X X, \\ & Y \in a^{*}, \\ & Y=X b^{*},\end{aligned}$

Not straight-line:
Not straight-line:

$$
\begin{aligned}
& X \in a^{*} b^{*}, \\
& Y=X X, \\
& Y \in a b a b^{*}, \\
& X=Y Y
\end{aligned}
$$

Visual Example

$$
\begin{gathered}
\mathrm{Z}_{1}=\mathrm{X} \mathrm{Z}_{2}, \quad \mathrm{Z}_{2}=\mathrm{CY}, \\
\mathrm{C} \in \mathrm{c}, \quad \mathrm{X} \in \mathrm{ab}{ }^{*} \mathrm{c}, \quad \mathrm{Z}_{1} \in \mathrm{~b} .
\end{gathered}
$$

Straight-line:

- No cycles

- Each node has incoming arrows from one constraint

Visual Non-Example 1

$$
Z_{1}=X Z_{2}, \quad Z_{2}=C Y,
$$

$C \in c, \quad X \in a b * c, \quad Z_{1} \in b . .^{*}$,

$$
Z_{1}=Z_{2} B
$$

Z1 has two incoming constraints

Visual Non-Example 2

$$
Z_{1}=X Z_{2}, \quad Z_{2}=C Y,
$$

$C \in c, \quad X \in a b * c, \quad Z_{1} \in b . .^{*}$,

$$
C=Z_{1} Z_{2}
$$

Graph has cycles

Comparison with Tree Fragment

Straight-line is more general than the tree property

$\mathrm{X}=\mathrm{Y} Y$ (straight-line, not tree)
$X=Y Z$ (Straight-line and tree)

Proof Strategy

$$
\begin{gathered}
\mathrm{Z}_{1}=\mathrm{X} \mathrm{Z}_{2}, \quad \mathrm{Z}_{2}=\mathrm{C} Y, \\
\mathrm{C} \in \mathrm{c}, \quad \mathrm{X} \in \mathrm{ab}{ }^{*} \mathrm{c}, \quad \mathrm{Z}_{1} \in \mathrm{~b} .
\end{gathered}
$$

Start at sink nodes

- Propagate constraints backwards to source nodes
- If no contradictions found, solution can be derived

- Terminates because no cycles

Branching

Backwards propagation creates branching
Each branch has to be explored for unsat
For sat, only one branch needs to succeed

Example

Search tree:

$$
\Phi:=\mathrm{W} \in \mathrm{~b}, \quad \mathrm{Y} \in \mathrm{~b}^{*} \mathrm{c}^{*}, \quad \mathrm{Z} \in \mathrm{a}^{*} \mathrm{bc}^{*},
$$

$$
X=W, Z=X Y
$$

Deriving Solutions

Eliminate via intersection Pick value for source node $c \cap c^{*} \cap b^{*} c^{*}=c$
To derive solutions, we start at the source nodes
Eliminate $\mathbb{Z} /{ }^{\text {th }}$ Winfdgreation $Z \in b c$

Experimental Evaluation

Initial experiments on propagation strategies on QF_S from SMT-COMP

1. Only backward propagation: T / O on 20 (out of $\sim 7 \mathrm{k}$ benchmarks)
2. Only forward propagation: T/O on 33
3. Forward then backward: T/O on 18

OSTRICH: portfolio approach supporting richer constraints

Summary

- Backwards and forwards propagation of constraints
- Solution extraction via cut
- Can support a range of string functions
- Sound, but not always complete
- Completeness for fragments:
- Tree property
- Straight-Line
- Chain-free

