
Extensions:
Handling of Length and Integers

Overview
• Constraints mixing strings and integers are extremely common

• In theory, very challenging combination

• In practice, there are many fragments that can be solved completely

• We introduce three of them:

1. Straight-line + length constraints that are monadically decomposable

2. Straight-line + general length constraints

3. Straight-line + general operations with integers

Strings + Integers
• Word length:

• Substring:

• Character access:

• Letter counting: count occurrences of ‘a’, etc.

• String-to-number conversions:

Length constraints
• How can we solve this constraint?

• Easy! The length constraint is equivalent to:

• More generally: every semi-linear length constraints over a single string
variable can be replaced with a regular expression

How about the case of multiple variables?

Monadic formulas
• A formula is monadic if it is a Boolean combination of monadic predicates 

(at most one variable per predicate).

• A formula is monadically decomposable if it is equivalent to a monadic
formula.

• Observation: if a formula in variables is monadically
decomposable, then it describes a recognisable relation between

|x1 | , …, |xn |
x1, …, xn

Margus Veanes, Nikolaj Bjørner, Lev Nachmanson, Sergey Bereg: 
Monadic decomposition. J. ACM 64(2), 14:1–14:28 (2017).

Monadic decomposition in benchmarks
• Experiments with the Kaluza benchmarks: only 4713 out of 47284 problems

contained relevant non-monadic length constraints

Matthew Hague, Anthony W. Lin, Philipp Rümmer, Zhilin Wu:
Monadic Decomposition in Integer Linear Arithmetic. IJCAR 2020

Different fragments with integers
1. Straight-line, all length constraints monadically decomposable

• Can directly be handled in the propagation-based framework

2. Straight-line, general length constraints

3. Straight-line, general operations with integers

General length constraints

• Solution: represent both length constraints and regular languages using
arithmetic formulas

• The original formula is sat if and only if the length abstraction is sat:

Find formula  
representing lengths of 
all included words

ϕ1[|x |] ϕ2[|y |]

Length abstractions of regular languages
• The length abstraction is a special case of the Parikh image

• An existential Presburger formula representing the length abstraction can be
computed in linear time

Kumar Neeraj Verma, Helmut Seidl, Thomas Schwentick: 
On the Complexity of Equational Horn Clauses. CADE 2005: 337-352

Different fragments with integers
1. Straight-line, all length constraints monadically decomposable

• Can directly be handled in the propagation-based framework

2. Straight-line, general length constraints

• Supports only certain functions: concat, length-preserving transducers

• Approach introduced in the SMT solver Norn

3. Straight-line, general operations with integers

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás Holík, Ahmed Rezine, 
Philipp Rümmer, Jari Stenman: String Constraints for Verification. CAV 2014

General constraints involving integers

• How can we solve this constraint?

• Solution: tightly integrate length + regular constraints: 
Cost-enriched automata (CEA)

y = x[l . . r] ∧ x ∈ L1 ∧ y ∈ L2 ∧ r ≥ 2 ⋅ l

Perform backwards-propagation 
to derive a cost-enriched constraint 
(x, l, r) ∈ L′ 2

Check consistency 
of the cost-enriched 
constraints

Taolue Chen, Matthew Hague, Jinlong He, Denghang Hu, Anthony W. Lin, Philipp
Rümmer, Zhilin Wu: A Decision Procedure for Path Feasibility of String Manipulating
Programs with Integer Data Type. ATVA 2020

Cost-enriched automata (CEA)
• Automata augmented with counters

• Counters start at zero

• Transitions can increment or decrement counters

• No zero-tests

Backwards-propagation with CEA

• This works for: concat, substring, replace-all, reverse, etc.

y = x[l . . r] …

CEA consistency checking
• After propagation:

• Compute the products of all CEAs for the same string variable

• Reachable counter values are extracted from Parikh image of the product

• Relatively expensive Use laziness to speed up the checks→

Amanda Stjerna, Philipp Rümmer: A Constraint Solving Approach to Parikh Images
of Regular Languages. OOPSLA 2024

CEA backend in OSTRICH
• At the moment, the CEA back-end is separate from the standard automata

back-end

• On the web interface: menu to choose the back-end to apply

